
On Mapping Releases to Commits in Open Source
Systems

Joseph F. Shobe, Md Yasser Karim, Motahareh Bahrami Zanjani, Huzefa Kagdi
Department of Electrical Engineering and Computer Science

Wichita State University
{jfshobe, mxkarim, mxbahramizanjani, huzefa.kagdi}@wichita.edu

ABSTRACT
The paper presents an empirical study on the release naming
and structure in three open source projects: Google Chrome,
GNU gcc, and Subversion. Their commonality and variabil-
ity are discussed. An approach is developed that establishes
the mapping from a particular release (major or minor) to
the specific earliest and latest revisions, i.e., a commit win-
dow of a release, in the source control repository. For exam-
ple, the major release 25.0 in Chrome is mapped to the ear-
liest revision 157687 and latest revision 165096 in the trunk.
This mapping between releases and commits would facilitate
a systematic choice of history in units of the project evolu-
tion scale (i.e., commits that constitute a software release).
A projected application is in forming a training set for a
source-code change prediction model, e.g., using the associ-
ation rule mining or machine learning techniques, commits
from the source code history are needed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
Mining Software Repositories, Software Releases, Commit
History, Empirical Studies

1. INTRODUCTION
One common thread of investigation in the software main-

tenance and evolution community is improving software (e.g.,
bug or change) predictive models. Oftentimes, these models
rely on the premise that an event, e.g., a defect or change in a
source code entity, which occurred in the past is likely to re-
occur in the future[1][2]. A number of previous studies in the
literature used time periods in calendar units of day, month,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2-3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

or year (e.g., 2 or 6 months) to gather events in the training
set formation of a desired prediction model[1][2]. The ra-
tionale for a particularly chosen slice of history ranges from
the observation of a specific development or maintenance
activity to arbitrary.

We propose an approach that would facilitate the forma-
tion of training sets in release units of the software project.
Releases form organic units of the software evolution time
line to stakeholders ranging from end users to developers.
The project release names/numbers (e.g., major or minor re-
lease) are typically an indicator of the magnitude of changes
and are primarily reference points in the production envi-
ronment. For example, a user reports a bug found in a par-
ticular release of a software system (e.g., gcc 4.7.0). Another
scenario is a feature request to be added to the next release
of a software system. In case of a certain source-code change
prediction model, the training set includes commits, i.e.,
changes to source code entities, which are typically stored
in version control systems. The explicit mapping between
a specific release number and Subversion commits forming
this release including the repository location of these com-
mits (e.g., branch or trunk) is valuable; however, oftentimes
not directly available from the project. One could infer re-
lease to commit mappings from release dates, which are of-
ten available from the project web site. Unfortunately, this
approach provides a coarse approximation of the commit
range at best, possibly including irrelevant or excluding rel-
evant commits, and no precise location of these commits
(e.g., trunk or a specific branch).

Our approach establishes mapping from the project re-
lease numbers (macro evaluation, which the broader user
community sees) to the specifics of the changes in the repos-
itories (micro evolution, needs of the developers to support
the change task). It maps project release numbers (e.g., gcc
4.7.0) to Subversion commit revisions (e.g., revision 184777
to 194296) and their location in the repository (e.g within
the branch gcc-4 7-branch). To form a basis for our ap-
proach, we conducted an examination of three open source
projects: Chrome, gcc, and Subversion. We found that the
release to revision mapping is neither explicitly documented
nor is straightforward to infer. It requires a systematic engi-
neering approach augmented with human intervention. Fur-
thermore, the release naming conventions and classifications
(e.g., major and minor releases) vary across projects. We did
not find any explicit description of release to commit map-
pings in the previous studies on predictive models reported
in the literature.

2. EXPLORATORY STUDY ON RELEASE
SCHEMA

Subversion is a centralized version control system which
is commonly used to maintain the source code repository
of a project. A single Subversion commit is a transaction of
changed files bundled together for inclusion in the repository.
During the software development life cycle, individual files
to be modified or deleted (new files are handled during the
commit) are checked out from the trunk or branch of the
source code repository and then later committed back to the
same trunk or branch where a unique identifier (i.e. revision
number) is assigned. Eventually, committed transactions
are grouped together to form a release.

A major release typically indicates substantial changes in
the software, such as new functionality, new hardware plat-
form, or perhaps a redesign of the presentation approach.

A minor release typically indicates fixes to the code base
without introducing any substantial change to functionality.

Sequence-based versioning schemes with three and four el-
ements (such as 3.4.1 and 4.2.1.3) are popular approaches for
identifying the name of a major/minor release for a project.
A very common practice is to use the first part for iden-
tifying the major release and the second for identifying the
minor release within a major release. Thus, the release num-
ber 4.2.1.3 has a major release of 4 and a minor release of 2.
Another, less common practice, is to use the first two parts
for identifying the major release and the remaining parts
for identifying the minor release. Thus, the release number
3.4.1 has a major release of 3.4 and a minor release of 1.

Three open source projects, Chromium (Chrome for short),
gcc, and Subversion, were chosen to understand the break-
down of their release schemas.

2.1 Chrome
The Chrome website has several documents regarding the

development and release of the project. One document1

shows a time line of some of the latest releases (see Table
1) and their corresponding dates. The list is incomplete
because it does not show releases earlier than 17; however,
it does serve to establish the definition of the release name
and how often releases occur (between one and two months).
In another document2 found on their web site, the release-
numbering scheme is described in detail. Each release con-
sists of a four-part sequence (e.g., 25.0.1331.0). The first
and second parts identify the major and minor release num-
ber (e.g., 25 and 0). The third identifies the build number
(e.g., 1331) and fourth identifies the patch number within a
build (e.g., 0).

Table 1: A Subset Of Chrome Releases
Release Week of Branch Point

23 Sept 17th, 2012
24 Oct 29th, 2012
25 Dec 17th, 2012

Each release of Chrome is stored within the releases di-
rectory3 and details about each release directory include the
directory name, latest revision number, its age from today,
the author and the last entry in the log. Upon examination
of the project‘s repository, the versioning for a major release

1http://www.chromium.org/developers/calendar
2http://www.chromium.org/releases/version-numbers
3http://src.chromium.org/viewvc/chrome/releases/

does indeed follow the pattern described in the project doc-
umentation. That is, the first part of the release sequence
describes the major while the second part describes minor.
Out of twenty-five major releases, only two of them, 4 and
17, included one minor release. Development for Chrome oc-
curs along the trunk of the repository. When a release (more
than just a patch) is desired, a build (branch) is created by
taking a snapshot of the trunk or another branch and the
newly created build number is used as the directory name4.
In addition, a release (tag) is created, which is neither a
snapshot of the trunk nor branch. Rather, it includes a cou-
ple of new files, one of which is a dependency file identifying
all the files included in the release and their location in the
trunk, a branch, or some external system. Smaller changes
to a major release are additional builds, each with a new
release signature (due to the increasing build number).

2.2 Gcc
The gcc web site also has several documents. One such

document5 describes the development and release method-
ologies; past, present, and future development, branch points,
and releases in a tree-like manner. Another document6 shows
a timeline of releases and their dates.

Table 2: A Subset Of Gcc Releases
Release Release Date
Gcc 4.7.2 Sept 20, 2012
Gcc 4.5.4 July 2,2012

1.3 June 10, 1987

Their release-numbering scheme is more traditional, con-
sisting of three parts. By observation and reason, one can
conclude the first part is the major, second part is the mi-
nor, and third part is a patch or fix. For this project, the
focus is along the major/minor releases (e.g., 4.6, 4.7). The
web site also includes the ability to view the project’s source
code repository7. Details about each directory include the
directory name, latest revision number, its age from today,
the author, and the last entry in the log. Development for
gcc occurs along the trunk of the repository. When a release
(more than just a patch) is desired, a branch is created by
taking a snapshot of the trunk or another branch and stor-
ing it in the branches directory.8 using the newly created
branch as the directory name. In addition, a tag is created
by taking a snapshot of the branch and storing it in the
tags directory.9 using the newly created tag as the directory
name. Patch releases occur within an existing branch and
generate a new release signature, but not a new branch.

Beginning with release 3.0, the major, minor, and patch
level values translate rather easily into branch and tag names
listed within the branches and tags directories of the reposi-
tory. Branches are prefixed with the string “gcc-”followed by
the major, minor of the release, and finally a postfix string of
“-branch”(e.g., 4.7 has a branch name of “gcc-4 7-branch”).
Each release tag is prefixed with the string “gcc ” followed
by the major, minor, patch level of the release, and finally
a postfix string of “ release” (e.g., 4.7.2 has a tag name of

4http://src.chromium.org/viewvc/chrome/branches/
5http://gcc.gnu.org/develop.html
6http://gcc.gnu.org/releases.html
7http://gcc.gnu.org/viewvc/gcc
8http://gcc.gnu.org/viewcvs/gcc/branches/
9http://gcc.gnu.org/viewcvs/gcc/tags/

“gcc 4 7 2 release”).

2.3 Subversion
The web site for Subversion includes a document 10 de-

scribing the time line of all releases (see Table 3) and another
document 11 outlining specific details about the making of a
release, including details of the version numbering scheme.
Their scheme uses a three-part numbering system. The first
part identifies the major, the second part the minor, and
the last part is for identifying patches or bug-fixes. The web
site also includes the ability to view the project‘s source
code repository 12. Of interest in this directory are the tags,
branches and trunk directories.

Our work focuses along the major / minor releases (e.g.,
1.6, 1.7). These too translate into the tag names listed in the
tags directory of the repository for each of the releases. Each
release is simply the major, minor, patch level of the release
(e.g., release 1.6.1 has a tag name of “1.6.1”). Each release
tag is a snapshot of a branch from the branches directory
and corresponds to the major and minor release. Branches
are almost the same. Each begins with the major, minor
of the release, and ends with a string of “.x” (e.g., branch
1.6 has a name of “1.6.x”). Each branch is usually a copy
of the trunk at the time the branch was created; however, a
couple of exceptions occurred with respect to the 1.0 release.
First, the branch 1.0.x came from another branch that no
longer exists in the directory instead of coming from the
trunk. Second, a few of the release tags came from a branch
name that includes the patch level (e.g., 1.0.3) instead of the
expected branch 1.0.x.

3. MAPPING RELEASES TO REVISIONS
In this section we use our understanding of release schemas

to map major and minor releases of three open source projects
to identify the start (earliest) and end (latest) commit revi-
sions from both the branch and trunk for each release.

3.1 Extracting Commit History
Using Subversion‘s command line tool (svn), we can ac-

cess each project‘s repository and list a directory as well as
retrieve logs for a single commit (by revision number) or
range of commits (range of revision numbers). Thus far, we
only determined the names of the releases and their loca-
tion in the directories. We are yet to determine the starting
(earliest) revision number for each of the releases. It is im-
portant to note this information is not available and must be
constructed manually through examination of commit logs.

3.2 Origin of Releases and Branches
By using the above technique, the latest and earliest revi-

sion numbers can be located for each of the major and minor
releases of interest as well as each branch because each has
its own directory. However, where each of the releases and
branches came from still needs to be determined. Did the
release come from a branch or the trunk? Did the branch
come from another branch or the trunk? The commit logs
do include a list of files and directories that were added,

10http://subversion.apache.org/docs/release-notes/release-
history.html

11http://subversion.apache.org/docs/community-
guide/releasing.html

12http://svn.apache.org/viewvc/subversion

modified, deleted, or replaced. These logs will be helpful in
deriving the answer to these questions.

For Chrome, the logs for each release only show the addi-
tion of a couple of files (using the svn -v flag includes more
verbose information such as details of the directories/files af-
fected), so there is nothing in the logs to indicate the source
of the release. Thus, the release is not a snapshot of its
source. However, the release directory itself does include
the build number. As stated earlier, the build number is
also the name of the branch in the branches directory, so
the source of the release can be derived as always coming
from the branch. For gcc and Subversion, one must examine
the logs for each release within the tags directory to identify
its source. Each release’s earliest log includes a line entry
showing the addition of the directory name itself. As tags
are a snapshot of a branch or trunk, the line entry reflects
the name of the entity (file or directory), the source of where
it came from (branch or trunk) and what the latest revision
number in the source was at the time of the snapshot (copy).
For these two projects, the data collected shows release tags
come from branches (with a couple of exceptions) and thus,
the specific branch and revision number can be identified by
examining the line entry in the logs. One exception to this
rule are the tags for older releases that no longer supported,
which shows they came from the trunk or from a branch
that no longer exists, but these were due to the migration
of the repository. Another exception, specific to Subversion,
showed their 1.7 alpha releases came from the trunk.

This process of identifying the location of releases and
branches is manual and takes a lot of times. To build an au-
tomated tool for locating positions , all the projects should
have some common branching techniques. From above dis-
cussion, it was clear that Chrome had different branching
scheme than gcc and Subversion. Besides we had found that
in Subversion there were some extra branching for migra-
tion process of version control system. These obstecles were
the main challenges for us to build an automated tool. Our
future work also focus on this track for further development.

3.3 Release to Commit Mapping
Development for the next release, be it a major or minor,

occurs within the trunk. When a new release is desired,
a snapshot (copy) of the trunk is taken to create a new
branch and then (as seen for gcc and Subversion) a snap-
shot of the new branch is taken to create a new release, thus
branches come from the trunk and releases come from the
branch. When a new patch release is desired, a snapshot of
the branch is taken, thus patch releases come from an exist-
ing branch. With this understanding, the svn tool can be
used to pull logs to identify the starting (or earliest) revision
for a release or branch. The logs of interest are those that
exist between the latest revisions of two consecutive releases
or branches. Specifically, the algorithm in Figure 1 is used.

For example, using gcc‘s branches 4.4(i) and 4.5(i+1), the
Li value for branch 4.4 was pre-determined to be ‘45121’,
therefore Ei+1 has a value of ‘145122’. The Li+1 value for
branch 4.5 was also pre-determined to be ‘157987’. As a
result, the output of “svn log -r 145122:157987 ..” yields a
log identifying the earliest revision of branch 4.5 as ‘145124’
with a date of ‘03-27-2009’. Using this method, we have
mapped releases to revision numbers of version control sys-
tem as presented in Table 4.

Table 3: A Subset of Release to Revision Mappings
Version Release Latest

Revi-
sion

Earliest
Revi-
sion

Branch Latest
Revi-
sion

Earliest
Revi-
sion

Trunk Latest
Revi-
sion

Earliest
Revi-
sion

Chrome
24.0 24.0.1272.0 157735 157734 1272 165396 157728 trunk 157686 150761
25.0 25.0.1313.0 165136 165135 1313 165127 165127 trunk 165096 157687
Gcc
4.6.0 gcc 4 6 0 release 171513 171513 gcc-4 6-branch 171512 170935 trunk 170934 157990
4.7.0 gcc 4 7 0 release 185675 185675 gcc-4 7-branch 185674 184777 trunk 186776 170936

Subversion
1.6.0 1.6.0 876759 876759 1.6.x 876724 875962 trunk 875961 869157
1.7.0 1.7.0 1181106 1181106 1.7.x 1176459 1145993 trunk 1145982 875964

Figure 1: Mapping Algorithm

4. RELATED WORK
There are a number of research efforts on the nature of

commits. Some researchers have tried to relate commits
to certain activities, e.g., large commits are more likely to
be originated from code management activities, while small
ones are related to development activities [3]. Alali, et al.
[4] examined version histories of nine open source software
system to uncover trends and characteristic of what would
typical commits look like. Gall et al. [5] used the release
information such as version numbers of programs, modules,
and subsystems together with change reports to discover
common change behavior such as change patterns. Gall et
al. [6] studied 20 different releases of a system with differ-
ent major and minor releases. Saliu et al. [7] proposed a
new release planning framework that considers the effect of
existing system characteristics on release planning decisions.

From the above discussion, it can be seen that none of
the approaches traced releases to commits. Our approach
provides this mapping, which has projected applications for
tasks such as change impact analysis, change prediction, and
detecting logical coupling.

5. CONCLUSIONS AND FUTURE WORK
We studied three open source systems and found that

there are differences in their release schemes. There are
noticeable variations in their naming convention, repository
structures, and the mapping information to source code com-
mits. We presented an approach to trace the specific release
to the commit range (first and last commits) in the source
code repository. The desired applications of this release to
commit mapping include the formation of effective training
sets and change predictive models. Our immediate goal is to
empirically compare the time-based selection of commits and

our approach with regard to prediction tasks (e,g., change
and bug) and their accuracies.

6. ACKNOWLEDGMENTS
This work is supported in part by the NSF CCF-1156401

grant. Any opinions, findings and conclusions expressed
herein are those of the authors and do not necessarily re-
flect those of the sponsors

7. REFERENCES
[1] T. Zimmermann, A. Zeller, P. Weissgerber, and

S. Diehl. Mining version histories to guide software
changes. Software Engineering, IEEE Transactions on,
31(6):429–445, 2005.

[2] Huzefa Kagdi, Michael L. Collard, and Jonathan I.
Maletic. A survey and taxonomy of approaches for
mining software repositories in the context of software
evolution. Journal of Software Maintenance and
Evolution: Research and Practice, 19(2):77–131, 2007.

[3] L.P. Hattori and M. Lanza. On the nature of commits.
In Automated Software Engineering - Workshops, 2008.
ASE Workshops 2008. 23rd IEEE/ACM International
Conference on, pages 63–71, 2008.

[4] A. Alali, H. Kagdi, and J.I. Maletic. What’s a typical
commit? a characterization of open source software
repositories. In Program Comprehension, 2008. ICPC
2008. The 16th IEEE International Conference on,
pages 182–191, 2008.

[5] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In Software
Maintenance, 1998. Proceedings., International
Conference on, pages 190–198, 1998.

[6] H. Gall, M. Jazayeri, R.R. Klosch, and G. Trausmuth.
Software evolution observations based on product
release history. In Software Maintenance, 1997.
Proceedings., International Conference on, pages
160–166, 1997.

[7] O. Saliu and G. Ruhe. Supporting software release
planning decisions for evolving systems. In Software
Engineering Workshop, 2005. 29th Annual
IEEE/NASA, pages 14–26, 2005.

